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Letter to the Editors 

Solution of Troesch’s Two-Point Boundary Value Problem by 

Shooting Technique 

1. INTRODUCTION 

Recently Roberts and Shipman [l] have described a numerical investigation 
of Troesch’s equation which describes confinement of a plasma column by radia- 
tion pressure. They have claimed that the Troesch’s problem can be solved only 
by a combination of multipoint shooting with continuation and perturbation 
techniques and that none of these methods alone is capable of solving the problem. 
To overcome the difficulties associated with the problem, Jones [2] has proposed 
to modify the initial guess in such a way to avoid the overflow. The reason for 
the blow-up of the solution is the existence of a pole which for an unreasonable 
guess of the missing initial condition falls in the region of integration. 

The present paper shows two techniques which render the numerical solution 
of the Troesch’s equation almost trivial. The first method is based on an appropriate 
transformation which expands the length of the interval, the second method 
takes use of the exchange of independent for dependent variables. The former 
approach is sometimes referred to as the parameter mapping technique. 

2. PARAMETER MAPPING TECHNIQUE 

The Troesch’s problem is in the form: 

d2y/dt2 = n sinh ny 

subject to the boundary conditions 

Y(O) = 0, y(1) = 1. (lb) 

The aim of the solution of (la) and (ib) is to find the profiles and the missing 
initial conditions for different values of the parameter n. 

After substitution, 

ny = w, nt = x, (2) 
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the parameter n can be eliminated from (la), 

d2w/dx2 = sinh w; (3) 

however, it appears in the boundary conditions 

w(0) = 0, w(n) = 72. (4) 

The mapping technique is very simple; on choosing the missing initial condition 

dw(O)/dx = 77 (= dy(O)/dt) (5) 

(3) is integrated using the initial conditions (5) and w(0) = 0 until 

w(n) = n. (6) 

One has to iterate to satisfy (6) within a preassigned tolerance, E, e.g. if w(n) > n 
the integration procedure returns to the preceding value and the integration step 
is halved. This simple bisection procedure is repeated as long as the difference 
w(n) - II > E. However a straightforward method of satisfying (6) exists. Starting 
from a certain value x0 , where dw(x,)/dx > 1, one can switch from the integration 
of 

dw/dx = z, dzldx = sinh w, (7) 
w(0) = 0, 40) = 7, 

which yields z(x,,) = z,, and w(x,,) = w,, , to a new system 

dx/drp = l/(z - l), dw/dp, = z/(z - l), dz/dp, = (sinh w)/(z - l), (8) 

subject to the initial conditions 

qJ = w, - x0 : x=x,, w  = w,, z = z, . (9 

Clearly, the value of w  for v = 0 is the unknown value of the parameter n. 
The dependence calculated for a sequence of 7 is presented in Table I. The 

integration was performed in the double precision arithmetics on the Tesla 200 
computer, i.e., with the precision of 15 significant digits, using the Runge-Kutta- 
Merson marching integration technique with the automatic step-size control [3]. 
A numerical experiment pointed out that the direct algorithm is more effective 
than the bisection method. For illustration purposes, a course of one integration 
is presented in Table II. It is obvious that this algorithm for a given value of 7 
calculates a posteriori the value of n. It is very simple to interpolate in Table I if 
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TABLE I 

Dependence of y’(0) on n Obtained by the Parameter 
Mapping Method. 

(For given y’(0) the value of n is calculated) 

? = Y’(O) n 

0.9 0.792 

0.8 1.151 

0.6 1.753 

0.4 2.394 

0.2 3.308 

0.1 4.129 

0.0457 5.000 

0.01 6.611 

0.003 7.849 

0.001 8.965 

0.000356 10.01 

0.0001 11.28 

10-e 13.59 

10-e 15.89 

10-T 18.20 

10-S 20.50 

10-0 22.80 

10-10 25.10 

lo-” 27.41 

10-12 29.71 

one needs to know the value y’(O) for a given value of n. Looking at Table I, an 
approximate dependence can be easily evaluated: 

n 5 29.71 - In 1012y’(0), (10) 

which is valid roughly for y’(O) < 10B4. This asymptotic relation corresponds 
approximately to the relation 

y’(O) f se-“. (11) 

It is shown in [l] that the associated initial-value problem for this particular 
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TABLE II 

A Course of One Integration of Eqs. (7) and (8) in 
Parameter Mapping Technique 

x W z = dwidx 

0.0000 0.0000 0.0010 

3.5933 0.0182 0.0182 

6.0402 0.2102 0.2106 

7.0135 0.5594 0.5667 

7.7081 1.1433 1.2065 

8.1071 1.7653 2.0036 

8.5071 2.8918 4.0101 

8.7886 4.6259 10.0053 

P x W z 

-4.1627 8.7886 4.6259 10.005 

-3.6010 8.8414 5.2404 13.666 

-2.8809 8.8879 6.0070 20.107 

-2.0032 8.9244 6.9212 31.804 

-1.0061 8.9495 7.9435 53.057 

0.0000 8.9646 8.9646 88.426 

value of y’(O) possesses a pole approximately at t = 1. Usually for a guess 
y’(O) > 8e-” the pole lies in the integration range. Hence for higher values of n 
the unmodified shooting technique cannot be easily used. 

On the other hand, for low values of 12, an approximation can be developed, 
too. The implicit solution possessed by Troesch’s problem [l] is 

’ = I ,y (2 cash :: + C)li2 * 

To evaluate the integration constant C, we have 

s ,l (2 cash :: + C)l/a = ‘* (13) 

Differentiation of (12) yields 

y’(0) = (2 + cy2, (14) 
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because y(0) = 0. For low values of y1 the term cash nu can be approximated by 
the truncated Taylor series: 

cash nv * 1 + $n2v2. 

After substitution of this approximation into (13) and using the relation 

1 l 
s 

dv 

Gl 
( 
cg + yy2 

= [ilnjvf (y+4’2]];y 

we have 

1+(1+ 2 +/y2 = (2 y)1’2e”. 

After combination with (14) we obtain the relation (n >, 1) 

y’(0) * 2ne-m/(l + e-2n) 2 2ne+, (15) 

which is more accurate for n < 4 than (10) or (11) (for n = 2.349 the resulting 
y’(O) is 0.73 or 0.43 resulting from (11) or (15), respectively; cf. Table I.). 

3. CHANGE OF VARIABLES 

The appropriate strategy of solving the nonlinear problems containing a pole 
is to perform a transformation which makes it possible to eliminate it. Obviously, 
the exchange of dependent for independent variables allows us to eliminate the 
pole provided the dependent variable is monotonic. 

Let us rewrite (1) to a set of first-order differential equations: 

dyldt = z, dzjdt = n sinh ny. (16) 

For a monotonic function y(t), i.e., for z # 0, the inversion of variables yields: 

dtldy = l/z, dz/dy = (n sinh ny)/z, (17) 

subject to initial conditions 

y = 0: t = 0, z = 77. (18) 

The missing value r) must be guessed in such a way that after marching integration 
across, (19) is satisfied within a predetermined tolerance: 

y = l:f($ = t - 1 = 0. (19) 
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TABLE III 

Results for Method of Section 3. 
(Two Different Initial Guesses for the Iteration Process are Presented.) 

n k ?k( =Ym x ?n( =r’(O)i h 

5 

10 

15 

20 

0 

1 

2 

3 

4 

5 

0 

1 

2 

3 

4 

0 

1 

2 

3 

4 

5 

0 

1 

2 

3 

4 

5 

o.1oooo 
0.02168 

0.03786 

0.04503 

0.04574 

0.04574 

O.lOOE-2 

0.487E-3 

0.338E-3 

0.358E-3 

0.358E-3 

O.lOOE-3 

0.722E-5 

0.331E-5 

0.231 E-5 

0.244E-5 

0.244E-5 

O.lOOE-5 

0.487E-6 

0.748E-7 

O.l82E-7 

O.l64E-7 

O.l65E-7 

1 

1 

1 

1 

1 

112 
1 

1 

1 

l/4 

w 
1 

1 

1 

l/8 

l/4 

l/2 
1 

1 

0.01000 

0.02520 

0.04023 

0.04540 

0.04575 

0.04575 

O.lOOE-3 

0.228E-3 

0.331 E-3 

0.357E-3 

0.358E-3 

O.lOOE-4 

0.295E-5 

0.239E-5 

0.244E-5 

0.244E-5 

0. WE-6 

0.987E-8 

O.l49E-7 

O.l64E-7 

O.l65E-7 

1 

1 

1 

1 

1 

1 

1 

1 

1 

l/2 
1 

1 

1 

l/2 
1 

1 

1 

S The Newton method is used in the form qk+l = yk - A~(T#‘(Q) 
for solution of Eq. (19). The initial choice is X = 1. If  the condition 
I f(~~+~)l < / f(& is not fulfilled the step X is halved. 

To solve the nonlinear boundary value problem (17~(19) a modification of the 
shooting technique may be adopted. In our calculations we have used the shooting 
method with the Newton root-finding algorithm. To calculate the values of 
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derivatives for the Newton method a set of auxiliary equations must be solved 
simultaneously with the original differential equation [3]. To integrate the relevant 
initial-value problems Merson’s modification of the Runge-Kutta method has 
been used. Some results of computation with this technique are reported in 
Table III. It is obvious that after this transformation the integration of the 
Troesch’s problem is very simple. 
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